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DETERMINATION OR;THE STRESSES PRODUCED.BY-THE LANDING
IMPACT IN THE MBJLKHEADS OF 4 SEAPLANE BOTTOM*

By V. M, Darevsky .

INTRODUCT1ON

The present report deals with the determination of
the impact stresses in the dulkhead floors of a seaplane
bottom. The dynamic problem is solved on the assumption
of a certain elastiec system, the floor being assumed as
a weightless elastic beam with concentrated-masses at the
ends (due to the mass of the float) and with a spring
which replaces the elastic action of the keel in the center.
The distributed 1load on the floor is that due to the hydro-
dynamic force acting over a certain portion of the bottom.
The pressure distribution over the width of the float is
assumed to follow the Wagner law, The formulas given for
the maximum bending moment are derived on the assumption
that the keel is relatively elastic, in which case it can
be shown that at each instant of time the maximum bending
moment is-at the point of Jjuncture of the floor with the
keel. The bending moment at this point is a function,K of
the half width of the wetted surface c¢ and reaches its
maximum value when ¢ is approximately egual to b/2
where b 1is the half width of the float. In general,
however, for computing the bending moment the values of
the bending moment at the keel for certain values of ¢
are determined and a curve is drawn. The illustrative
sample computation gave for the stresses a result approx-
imately equal to that obtained by the conventicnal factory
computation.

METEOD OF COMPUTATION

Of the possiblé cases of the Ianaihg‘of a Eéapiahe
the most critical case will Dbe that for which the hydro-
dynamic impact is most nearly central (landlng on the stevn).

*Revort No. 449, of the Central Aero—Fyﬁrodynamlcal Insti-~
tute, Moscow, 1939 . ‘ .




2 NACA Technical Memorandum No: 1055

PR -
}

This case, therefore, will be the basis of thie discussion.
In the cases of landing on the bow or stern the length of
the impact surfaee 1s sufficient for 7thHé impact phenomenon
to be schematized as that of an infinitely long wcdge on
water, (The preblem has been solved by Wzgner (reference
1)¢} In the case of landing on the step, if the landing
is effected on a calm surface, the length of the impact
surface 1s small, and account must be taken of the fact
that the float enters the watecr at a certain angle, In
the most severe case, however -~ namely, landing on a

large wave ~ the length of the impact surface exceeds the
wlidth by at least 1.5 times. EHence, for this case the
preceding schematization 'is permissibilo.

In landing on the step when the yatio of the length
of the impact surface to the wildth is near 1.5, a corrcec-
tion for finitenéss of the surface is nevertheless desir-
able. This ¢correction may be made with the aid of the
experimental formulas obtained by Pabst (reference 2) and
Povitsky (reference 23). -

The number of main bulkheads assogiated with the
impact surface is not large. These bulkheads gensrally
differ little from each other. For simplicity and with
small error théy will be assumed as working under the
same conditions. In accordance with the preceding assump-
tion consider thst the bottom of each of the bulkheads
assoclated with the impact surface is loaded by a force
P/n where P is the total impact force and n the number
of bulkheads considered. In the case where certain of the
bulkheads differ appreciably in stiffness it is sometimes
possible to assume that the loading on the bulkhead bottoms
is proportional to their stiffnesses. Since the bottom
always has considerably less stiffness than the remaining
structure (hull) of the float, consider the latter as abso-—
lutely rigid and only the bottom as elastic*. In this case
in the landing on water the inertia fcreces will be trans-
mitted mainly at the ends of the bulkhead floors. This
permits a consideration of the mass of the entire float as

*A misunderstanding may srise. On the one hand use is

made of the Wagner solution which is applicable to a wedge
of absolute stiffness and, on the other hand, the elasticity
of the bottom. The fact is that the hydrodynamic pressure
is determined by the Wagner method. For a V-bottom float,
however, the change in-pressure for small. changes in.the
bottom shape due to elasticity is insignificant.  This
change should be taken into account .only for -practically
flat bottoms.
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‘concentrated-at=the ends of the floors*. If the mass of
the entire float is denoted by mn, the mass associated
with each end of the floor is m/2n.

In the case of ®ccentric impact, instead of m,
<
m, = O S should be used where 1 1s the radius of
T 42 + r® o
inertia of the seaplane and r the.legver arm relative to
the center of grav1ty of the seaplane.

v -

The centers of the floor beams will be acted oh by
the. elastic forece of the bottom with the force transmitted
malnIy through the. keel This force arises from the defor-
mation of the bottom on 1mpact The elastic force of the
bottom is considered as the elastic force of a fixed keel
beam supported on intermediate elastic supnorts (the floors
lying beyond the impact surface) .

Tn order to take into account, to some extent, the
action of the skin, the keel beam and the dulkhead floors,
with the attached strips of skin to be of a width of 40
times the thickness,are considered together.

Since the local action of the impact extends over a
finite length of bottom, it will Dbe sufficient to consider
the keel beam to be fixed on three main bulkheads to the
left and the right of the impact surface. Thus the part
of the. keel of interest may be represented by a bullt-in
beam on four intermediste elastic supvorts (fig. 1). The
rlgidlty of. tnese supports K is determlned by the formula

FEI
___Q, where /20 is the length of ‘the floor,' EL, the
: b3 o : ‘
tlffness (the floors are considered as stralght beams of
constant stlffness)

The method of computlng beams -on elastic supports is
described-in detail in the work of Umansky (reference a).
By use .of this method -the maximum deflegtion dwe to the -
concentrated :force at the center of the ‘beam P .-.is .
determlned c ) . , ) <R )

a— e T T I R .P,-.-w-..._P v o ey Sava—n - s b Am— = . [P

4 4 - , - -

“The bulkhead floors essociated w1th the impact surface
only are ‘considered. R
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wheres

X = K(EIK, Kk, A1)

BI é%iffness of the keel beam

K
K stiffness of the supports (the ratio of the reaction
of the supports to their deflection)

Al spacing between supports

The elastic action exerted on the bulkhead floors of
the wetted surface by the rest of the bottom structure is
thus replaced by the action of an equivalent spring of
stiffness X. Eaceh of the floors is acted on by a spring
of stiffness X/n.

As 2 result the follovingz schenme is arrived at, The
elastic bent beam (floor) with the concentrated masses
EN

m/2n ot the ends (Que to the mass of the float) has at the
instont +t = 0 & velocity Vg, (initial velocity of immer-—

sion of float*). Thereafter the beaam is acted unon by the
distributed load P/n (hydrodynamic pressure) and the con-—
centranted forces. (elastic sction of the botitom). At the
center of the bean the ferce F = %% where S 1is the

verticcl displacenent of the keel with respect to the chine,
and ot the ends of the beam the forces are /2 (fig. 2)%*,

On account of the symmetry onc-half the beam 'may be
congsidered, the corresvonding boundary conditions being
applied to the second half and the spring force taken to

"be ¥/2 - that -is, the stiffness decreasecd by one~half.

The floors may be of the most varied shapes. Twe
-sharply differing shapes are shown in figures 3 and 4.
.The elastic axis of -the floor is, in general, curved:.-
However, it ghall-be congidered stralght, since the
error made in this.dssumption- should be insignificant.
The elastic axis may be drawn as indicated in figures-
3 and 4. TFurthermore, the stiffness of the floor shall

*For landing on the step Vg should be taken as the
component of the landing velocity ncormal to the keel at

the step. In the remaining cases VO msy be taken as

the vertical component of the landing veloelty,. .
**THe dotted line represents the stiff frame replaclng the
float hull.
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be considered as constant (mean stiffness) although a
variable gtiffness offers no fundamental difficulties
for the discussion. It may be noted that for modern
fleoats there s a tendency to make the floor beam of
almost constant height. In view of the/ fact that the
elagtic axis is inclined at a certain angle to the
surface of the water and the pressure of the latter is
not normal to the axis, the floor beam during the
landing of the seaplane experiences both a transverse
and a longitvdinal impact. By decomposing the forces
acting on the floor beam, including the inertia forces,
into tuo components (along and perpehdicular to the
elastic axis) the transverse and longitudinal impacis
may be separately considered, the stress in the floor
beam being determined as the sum of the, bending and
compressive stresses. It ‘is easy to show, however, by
simple compubtation that the compressive stresses will he
negligibly small by comparison with the bending stresses
and hence the longitudinal impact need not be considered.
In exactily the same way, 1t 18 of no value to¢ take info
account tha 1nclination of the elastic axis to the water
surface, siace this angle a« will generally be 10° to
20%, cos o = 0.98430 —~ 0.93869, and hence the corre—
sponding components of the forces will differ 1little from
the values of the latter themselves.

Thus the final scheme (figs. 5 and 6) will be some=
what sinpler than that shown in figure 2. Figure 5 shows
the scheme at the initial instant ¢ = O, figure 6 at the
instant + when the float is i1mmersed somewvhat in the
water. As in figure £, the dotted line represents the
e6tiff frame replacing the uppey rigid part of the float,
Since the mass of the beam (floor) shown 1n figure 5 is
small by comparison vith the mass conceatrated at its
right end, the beam ig considered as weighfless.

The load distribution on the beam 1s determined with
the aid of the formula of Wagner (reference 5) for the
hydrodynamic pressure on a submerged wedge:

2

plx,e) = _ T _p 1+ at . sk N+ w? - B
(1 +p)2 z 1 +u v/ ‘ c
Y1l + ua — _E-E_ '
[+
\ . cu dw’ 1 u (1)
‘ de. 2
d/l + 1n® -~ i (1 +1®) -1
CB XE -
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where

p density of weter

B = pmcili

2m
¢ half yidth of wetted surfzce of bottom
! length of wetted surface

and u 1s devermined by the formula

e -~
wo= % &anB +c /p E% iniﬁl] ———J%%::: . (2)
~ L o L Y T
o Joe? - E2

0

+

= ﬂ(g) equation of bottom profile described relntiv:
to the axes of coordinates shown 1n figure 7

B V anzle
n

If the botbton prefrle n(f} may be expregsed in
the form of the serles™

n(g) = Bot « B.E% + BoE® + ...

then wule) 1s very simply determined as

U.(C) = l‘:oBO + }.‘:1810 + ::25202 e
where
v, = $,.836, k, = 1.0, ko = 1.272,
-3 < 1.5, ke = 10696, 1_5 = 4'.-875
and so Tarth**
g_"!nn Tawmeant 1anAdidmnoy Aanm +has Meoa-a trarecfarn w3 11 o
AL A LIL (=T & -LUG-\-.LL.I.Q LSS L ) ol Vil L4 VU o ¥ L o
o(x,c) = {——p(}:,C) &1 atv [0,c]
C 2t [e,p]
where
Al = 1
Il
} length of impsct surface
>
= - . -~ - r& a o~ o 0~ -~ o~ PEERY
b lengtr. of beom {(halif widih of fliozi) _

*Generally, for surfaces without discontinunitids, tre
profile 1s sufficiently well reprecented by an algebro:c
curve of the form n

*¥*'he general formula for &k, mary te Tound 1n the A.rnl ne
Congtructor!s Reference Book, weol. 11, 1938,
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¥
The equation of motion of the points of the elastice
axis of the beam with linear loading af(x,c) is the
following
) o e El +a atz —q(x,c),
wvhere a 18 the denaity of the beam. In this case the
beam is weightless and tggrefore a = O, On the other
hand, the acceleration 3;% is8 a finite quantity owing

to the finite mass at the end of the beam. Thus

02
@5 =0
and the equation of motion assumes the form
04 .
EIZ%=q(xc) (c=c(®). 3

ox
with the boundary conditions
Y'+(0, )=0, 2. Ely,” (0,¢)—k[y(b,©)—y(0, )] =0,
8. 3" (b,©)=0, 4 Ely," (b, )—k[y(b, ) —y(0, ) — 59/ (b, €) =0
K

where k = ey the stiftness of the spring
. 0y _ % oy d
It use 1 d h :
8 made of the relation 5 = o0 < > +-0c —F

the fourth condition may be rewritten in the following
form: m ) m

4. Ely,” (b, )—k [y (5, ) —y (0. O] — 529" (b, ) ¢*— g ¥ (b, ) " =0.
The initilal conditions are: 1.y (b, 0)=0, 2. 3 (b, 0)c’,_ =V,

Denote any function of x through ﬁﬁ% p(x,c) by

P,(x,c), any function P (x,¢) by P,(x,c), and so forth.

From equation (3) there is obtained

2% _ { P (x, ©)+C,(c)at [0, c],

08 L P(e, )+ Ci(0) at [c, ),

By [(P,(x, o)+C () x+C,(c) at [0,¢],

0x? _{ P, (¢, &)+ C, () C+Cy () [P, (¢, ©) 4 C1 ()] (x — €) at [c, 8],

Py (5,0)+ 5-Cu() 4 C, () £+ C; () at 0, ],
B 1P+ G @ +C(@ c+C O+ (o c)+cl © e+
+C @) x—+[P, (6 )+ C @ EZL at (o, 8],

*No account is taken of the weight of the concentrated mass
since for a sufficient immersion of the float the mass 1ig
compensated by the hydrostatic pressure and is moreover a
small magnitude by comparison with the inertia forces.
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Py, ¢+ 4 C (0 245 C ?c) % C, (0) x+C, (©) at [0, d,

P, (c, c)+-é—c @ ¢ 45 Co (@) ¢+ G () e+ CO+ [Py (6, )+
+5C ) c=+c © ¢+ C @) (= )+ [P, )+ Ci (0) e
+C(c>1‘x 2 11p e 0+C ST g le, 4.

With the aid of these relations and after the usual
transformations the boundary conditions can be written as

follows:

1. Cy(c)=—2P; (0, c).

2. (El—fg—)cu RE €y () = — EIP, (0,0)+ (b — ) Py (6, 0)+
+—2-(b—c)’P, (¢, ¢) — kbPy (0, ¢) 4k (b — €) Py (¢, €) — kP, (0, &)+ kP, (c, ©).
3. BC, () Cy(0)=—(6—c) P, (¢, ¢)— P (¢, ©).

4 g G (@ c"CL O —EI [P (6, )+ Ci () +

+h[ Pl 9P 0,05 GO 5 G @e+C@c+(Pte 0+

+rG @Gt (c)) (b—c)+(P2 (¢ )G () e+

+0) 85T+ (P a+a ) T+ 5 g

P, (¢, ¢) —
2P (6 P ) F§ G () Py G (O G (@) et
+b—0) [ 4Py @ =24 P (6, 9P @ Ok O Gl et
+or | +EFE [P @ 92 g P @ 9+ Cr et 0y @]+
+ 8L [P e ater @ | | F g Eh@a-Pieat

+FQWQﬁ+?Q%®ﬁ+q%®wHMwﬂEﬁMQQ—&mQ+

+560 @ a6 @t @ |+ G P o - P ot

FC/ @)+ Cf <c>j+“’ LEP e ot @]} =0



NACA Technical Memorandum No. 1055 9

From the first condition Ca(e) 1is determined and
from the second and third C,(e) and Cg(c). Having
determined C,(e), ©Cz(c), and Cz(c), the coefficient
Ca(c) 4g determined from the fourth boundary condition

and since this condition is a differontial equation of the
second order with respect to O4(c) the latter is obtained
with two arbitrary constants the value of whicech is found
from two initial conditions. But O, (c) need not be

determined because the normal stress ¢ 1s expressed
through the bending moment in the expression for which
Ca(e) does not enter, Thus by making use of the expres-

2 ]

sion for %u§ the following formula is obtained for the
x

bending moment M:

— { EI[P, (x, ©)+C, () x+C, ()] at [0, ¢], @)
EI[P, (¢, )+ C, () c+ C, () + (P (¢, ©)+C, () Y(x—c)] at e, b].
From the second and third boundary conditions an
expression is obtained for the values of C,(c) and

Cyle)d:
C,(0)= [— EIP, (0, &) -+ & (b—c) (¢ ~2bc — 26%) Py (6, )+

ke (c—26) Py (¢, ©)— k6P, (0, )+
-k (b— )P, (c, &) — kP, (0, &)+ kP, (c, c)]——l—,F . (5)
EI

3
Cy ()= [Elbp, ©, ¢)—(b— c)<151—-’?”i Kb ) P, (c,c)—

(El—l————kb o482 >P,(c, ¢) -+ kb? P, 0, ¢) —
— kb (b— ) Py (¢, ) +kbP, (0, ) — kbP, (6, ©) | —— 7. ©)

Integrating successively with respect to x the
function - AL p(x,c) results in the following expres-

sions for P,(x,c), P a(x,¢), Py(x,c), and P,(x,c):

P, (x, )= EI(:,gi-A:)’ —Z—{ [l—l—u’—l—cugg—m(l—}—u)]arcsin V;‘_F‘l?i—

T e VI
—T l/1+“ R gVifwh (:Vl——}—_u"—x}'

P, (x,0)= El (‘1,"_+_A:), E-[ c ( 14-u*+4cu %) (x arc sin—cﬁ—u—:.*_




10 ’ NACA Technical Memorandum No. 1055

rel/ e F) - [ e

e (14u7) x arc sin CV{;F?] — G [Fe—2eatu)+
T (. =]
-y (e ) o
="
~srpm | € A+ ("”“ o )>a’° sin st
+3(Fe atoree )/ 11e- T4 F s arwes

FLVIFE @V TFw 42 m( +ch+“,>

+c2 (14 u’)) arc sin

___;_,/1+u2 (cVi4ut—x)In <l~—mT—uz_>]}
im0 Ty (ke(ror ) [(4F24 )%
ity 1)

X(
—%(c’(l—{—u’) x’) l/l‘l‘“ 7__, ﬁx
xe

X arc sin

X
cVﬂ—fuzﬁ—

+(Fe atwr e a e tde) o)/ 1re 5] -

_ﬁ[_x4_11 c?(l-|-u’)x’—|—c1/l—l—u’(CVl'f‘u’—}-x)sl“ <1+ Vl—{—u’>+

A4ud)x (x’ —Z— (14 u’)> arc sin

+ecViFuw (cV1+u’—x)a'"<1" c,/1x+—u=>]]

Substituting these expressions in formulas (6), (5).
and (4) gives the bending moment distribution along the
beam. However, the value of the moment at the critical
gection I8 of 1nterest. For a float bottom with weak
keel (sueh as is usually the case in present day designs)

the critical section will be at the point x = 0.




NACA Technical Memorandum No. 1055

Thus .
—VaAlpe 1 2140
= [ (S )
+"“+“)+A(c)] S @

is found, where

AO=F G O=

—b [{ (1-|—u’—|-cu-——) [EH— B 4 =)]+1+ (l+u’)[El+

kb \ 1 kbe* (1 +u?) VIF & i d
-+ c(l-I—u)]}arcsml/l_*_u’-l— £ 9 [l—}—u-{-cu_%_

2 . (b—)(1—p) [, &b , kbct
— iR+ | e B -

3+2u? du
3(1+p)+‘“JE]'“

—%g’ukb(b— )[28+23u’+10—|—l3u +3 ]

—cu [El+——kb’ 4 kb;’] [9+10u’+

6(1+w)

2 4
— & chukb [(15+4u’) cu 98y 2354208 +24 +

105 4 115 2224 16 u V14u® kb(b—
I = R u{ - [m R G

kb® | kb (b—cp

l 2 2
-|——2—kbc (2+u)]+c[EI 5 -+ 3 +
=t

_|_"°(‘+")[El e+ 2L 0—o) e+
L
5 hbe? (4+u’)]ln (1—1—-_|_1—u,>] E'—Ic+'kb30

The value of u 13, however, sufficiontly small
(for a wedge with straight sides u = 2 tan B), so that

@)

in most of the terms of equations (7) and (8) wu?® ana

cn-g-l may be neglected.
e
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Finally, there is obtained

v gﬁlpcar 3 J
M (c) = - u(i " u)zLS(l.ZJ:) + %‘+ Ale) (9)

Ale) = (_ b [360MBI + 10kc?(9mb ~ 8¢c) +
L 720(1 + w)

feEI[zb(l - ) + 5¢(l + p)] +

uke2(45m7b —~ 48¢0)7 - — @ .
I sy L

kbe[10b2(1 + w) + 2be(l + 2u) + c?(3 - zu)]} + %} (2EI +

kbc?) lIn 2 + 1S reBI + kb(bv® +
ST +u-1 24
¢?)] in <1 - —1 2>J 2 (10)
1 +u Elc + kgag

The following should be remarked. In the square
brackets of formula (10), the second, third, and fourth
terms, notwithstanding the presence of the factor u,
may attain approximately a value of 20 percent of that
of the first term. It may be shown, however, that for
the usual bottom shapes and in the case of a weak keel,
where the stiffness of the latter may be of the same
order as the stiffness of the strongest floor beam, the
algebraic sum of the preceding terms is small by compari-
son with the first ferm and constitutes not more than
5 percent for ¢ <L E and not more than about 10 percent

for ¢ >-h. On this basls equation (10) may be replaced
by the equation

Ale) = - b [360mEI + 10kc®(9mb - 8c) +
720(1 + w)
pkc?(45m0 ~ 48¢) ] 1 (101)
3

which will be sufficiently accurate for ¢ < 2 and will
' 2

give an error of the order of 10 percent for ¢ > B.
2



NACA Technical Memorandum No. 1055 13

b3
: . By formulas.(9) and (L10) ‘or (9) and (10%) the stresses
in the floor as a function of ¢ aye determined. To ob-
tain the maximum stress, a curve @0(91 is drawn, a few
values of the bending moment being .determined by (9), and
the maximum value of My(c) obtained., This value shoéuld
be obtained, in general, for a certain lntermediate valus
of ¢. Thus, since the impact ford¢e incrsases with increase
in ¢, the bending moment Mgy(e) will likewise at first
increase. On the other hand, since with increasing ¢
the force of the hydrodynamiec 1impact 1s concentrated
usually at the edge of the wetted surface, it should be
expected that after a certain instant of time the value
of Mo(c) should begin to decreass, particularly since

wlth increasing ¢ the reaction of the keel 1lncreases
(rig. 6).

For V angles exceeding 15° the right side of equation
(1), and therefore also of equation (9), should be multi-
plied by the correction factor v:

-1 . BY_ n_u
v=1-8l_ 01522

e

where B' is the angle, in radians, of inclination of
the bottom at the edge of the impact surface.

Moreover equation (1) was obtained for the conditions
of the two—~dimensional problem; that is, the wedge was
assumed as infinitely long. Practically, equation (1)
may be used when the length of the wedge is bufficiently
large by comparison with the width, at least one and one—
half times as large. As has already been remarked at the
beginning of this paper, for landings on the bow and on
the stern the length of the impact surface is sufficiently
great and may be obtained by considering the landing on a
calm surface.

For landing on the step the most unfavorable condi-
tion should be considered -~ namely, when the float lands
on a wave, As experiments have shown, the length of the
impact surface then exceeds the width 2y 1.5 and more
times. Since, for a ratio of length of wedge to width
near 1.5 the error in computing the impact force on the
assumnption of two-dimensional flow is appreciable, a
correction for finiteness is desirable.

This correction may be made with the aid of the
experimental formulas obtained by Pabst for the associated
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~ mass ‘of flat plates and by Povitsky for the associated

mass of wedges. TFor Ry >1.,5, and usual V angles, the

formula of Pabst differs little from that of Povitsky.
Both 'of them will be glven .

Let b Ye the half width of .the plate and 1 its
1ength The associated mass M "for the plate for the
asSumptlon of two dimensional flow is . :

M =1 'Lc ’ (11)
- Zp |
the associatad mass for the finite plate <§_ >-l> is:
c

M = Tp(1c® - ) , (12)

For an element of an infinitély long wedge the
associated mass is .

M =

plc? (13)
cos” B ’

where
1 length of element of wedee
¢ half width of wetted surface of wedge

B V angle

=

7)o (&)

DT

(I denotes the Gamana function

—
/’\
10|

5 = L gin 2B
2

The velue of § also may be obtained from the curve of
figure 8.
For the wedge of finite length Z(- >~1 425, where

‘d is the length of the wetted part of the side of the
wedge

ZEBPICE <i - %) S (14)
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The impact force for the wedge 1s expressed by the
formula =~ - - .

aM

2
P = VQ
<1 + %>3u de

If the impact forece for the case of the two-dimensional
problem is denoted by Pinf and the true impact force for

the finite wedge by Pt' then

aM
P . M 5 ———t
oo (B2 inf) de = gple)
P'lnf m + Mt dMinE
de

Without taking into account the pressure distribu-
tion along the width of the wedge (the pressure distribu-~
tion is not identical for the infinite and finite wedges)
a corrcction is made for finitencss by multiplying the
pressure detcermined by formula (1) vy m(c). In formula
(9) it is then likcwise necessary to multiply the right
side by o(c). By use of formulas (11) and (12), there
ig obtaincd

ple) = L (1 - 29 (15)
I S
2m + _7:_
'n‘pc,5 c

From (13) and (14) is obtained

= 1 _ 3¢ ' (16)
= 1 -8 )
i 1 (-39 .

1 -
cos® Bm + L
8p c¢? e

Thus, for computing.the bending moment M and the
corrcction coefficient @(c) for landing on the step, it
remains merely to determine the length of the impact sur-~
face 1. It should be noted that, during the immersion
of the float in the water, tho length 1 1is, in general,
variable. It is nevertheless possible to assume a certain
constant value for | since,' in the most unfavorable case ~
namely, landing on a wave - the float almost instantaneously
comes in contact with the wave over a considerable length
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of surface which afterward increases only slightly. TFor
the same reason it is of no significance to make any
correction for finiteness at the first instants of im-
mersion., The correction should be made when a sufficient
width of the surface has already been immersed.

The character of the sea surface permissible for the
landing of seaplancs varies with the tonnage. The follow-
ing mean values for the limiting height of the wave h
in relation to aireraft of various tonnage ranges may Dbe
given (reference 6):

First group G = 700 - 1500 kilograms, h = 0.15 - 0.3 moter
Second group &G = 3500 - 5000 kilograms, h = 0.8 - 1,0 meter
Third group G = 8000 - 15000 kilograms,-h = 1.5 _. 1.8 meters
Fourth group ¢ = 20,000 asnd above, h = 2.0 meters

With improvement in the seaway the preceding values
may be raised somewhat. The length of the wave A 1is
determined as a function of h by the curve of Zimmerman
(reference 7). The wave is sufficicently well represented
by a trochoid. The equation of the trochoid in parametric
form is expressed by

s

= A h o4 =
X = Lo + = sin =
y- P > v ¥y

where A is the length of the wave and h 1its height.
The trochoid also may be obtained by a simple gcometric

w s

cos ®

construction (reference 8). The latter is indicated by
the thin lines of figure 9. For the trim anglse the mcan
angle of inclination of the tangent to the wave increascd
by 3% to 49 may be taken. For aircraft of not too great

tonnage (2500 to 5000 kg) the condition of the sea may be
taken as a "calm surfacc" (tke wave intensity is 2 points)
which corresponds to an average forcc of the wing equal
approximately to 3 meters per sccond (2.8 m/sec at a height
of 2 m from ground level and 3.6 m/scc at a height of 12 n
from ground level). Under these conditions the height of
the wave is 1 meter and its longth 11 meters., The angle

of inelination of the tangent to such a wave varies from
zero to 15° so that the trim angle may be taken as 10°.

To determine the length of the wetted surface, draw
the contour of the float with the chosen trim angle on
the profile of the wave, immersing the step to the chinec
(fig. 10)., It is necessary, of course, to see that the
tail of the float d&oes not dig into the wave (this refers
especially to floats with long tails). The maxipum
length of the wetted surface is taken as the value of 1.
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Ags tests have shown, in landing on the step the pres-
sures at the left end of the wetted surface are found to
be negligible. This may be explained by the fact that
because of the longitudinal curvature of the bottom the
points sufficiently far removed from the step come in con-
tact with the weter at later instants of time, Morcover,
the distance of thesc points from the center of gravity
of the aircraft apparently has somc effecct. For thils
reason, for the purposc of groater accuracy, it is neces-
sary to take for 1 not the entire length of the impact
surface but a smaller value - namely, the length of the
part at which the bottom is almost eylindrical.

If the width of the float is not too great, 1t may
be assumed that the maximum impact forece will occur at
immersion of the chine. S8Since, however, the ratio of the
width of the wettod surfrce to the length after the
ingtant when the float is alrecady sufficiently immerscd
in the wator varies little, the vslue of wo(e) may be
assumed constant with the width of the float taken as
the width of the impact surface.

ILTUSTRATIVE EXAUMPLE

The conputation is conducted for a symmetrical
landing on the step. The fundamoental data requircd for
the computation are the following: -

G  weight in flight (2500 kz)
¥, landing velocity (30.6 m/scec)

b half width of float at step (75 cm)

4 sketch of part of kecel with bulkhcads lying beyond
the impact surfacec is shown in figurc 11 (the length of
the wetted surface must be initially determincd).

I, mcan moment of inertia of part of kcel beam under
consideration (560 cm*)

I® mean moment of incrtia of floors lying directly
beyond impsct surface (90 cm?)

I mean moment of inertia of floors associated with
impact surface (313 cm*)

w mcan resistance moment of floors associatcd with
impact surface (20.85 cn®)

B elasticity modulus (7.2 X 10° kg/cm®)
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Computation
Computation of k.- . _ 48E/,  48.7,2.10°:-90 e
' S =g = 158810 gf

Computation of k.- Por the deflection and angular

displacement at section X of a beam on elastic supports
under the action of a force P applied at the center of
beam, the following formulas are obtained: (Reference 4

makes use of the same notation,)
=y,A,+ ¢B,— MC,—Q,D,.+N,,
¢, =9 A  —MB,' — QC,' —y,0+N,,

where ¥,» %, My, and Q, are the deflection,
angular displacement, bending moment, and shearing force
at the origin of coordinates.

The values A, B, C, D, N, A", B!, ¢', D', N' at the
nth support (from the origin) are determined by the recur-—
rence formulas:

n-- l

n—i

A,/ =1 "‘2"13:‘9" o

n—1

B/ =F,— %xCS, ,

=1

—S _Exi n—l’

i=1
n—1

D, = X %A, ,

=1

and

n—i

N/=PS,_ —Ex,N
=1

_(xn_—xi) __ Xn
(Sn-i—‘ 2E1'" ’ F,,——-g) .
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Place the origin of coordinates at the left bduilt-in
(See sketeh of part of keel under conelderation.)

end.
Then Vo=0,=0
‘and in the formulas for y, and o4 there only enter
the values €, D, ¥ and B', C!, N?.
The values of M, and Q, are obtained by equating

to zero the expression for y and ¢ at the right end.
Since y and ¢ for the right end are no other than

Ys+ ®ss the magnitudes ©C,, Cz, Cz, C4, Cs, Dy, Dp, Dj,
Dy, Vg, ¥y, ¥y, ¥,, Ny, Ny are determined in succession.

A 2
=8 —_ 10

9.203.10° — 1»98-107°

Then

40°
"'6-40,3-10°

80

— = . —6
2-40,3.107 7.85-10

A A
C,=8,—xC,I,_, = —15,88.102.1,98-10™

310*

350° . _
6-40,3-10"

2.40,3.10"

270°
6-40,3- 10"

N N A
Cy =Sy — #Cyls_y— xCyly_, = 15,88-1071,98-10—¢

—15,88.10-7,85-10~° —12,05-10"°

3900
2.40,3-10"

310
'6-40,3-107

A A N A
C,=S,—xCyl,_y —xCyly_y—+Cy 13 =

3508

‘57403 707 — 19,88-10%-7,85-107°

— 15,88-10%.1,98-107°
408

—_ . . 1078
15,88-107-12,05-107 g—prarn

= —20,093.107¢

A A A A A
Co=S;5-—2Cil_y —xCols_y—xCyly_y—2xClg_ =

4300 . . 39%0°
=ga03.107 100810 1,98-107 g o ter
803

350°
6.40,3-10’ +

6403 Jor — 15:88-10%:12,05-107°

— 15,88-.10?-7,85.107¢

40° .
6-40,3-10"
In the same manner, by the preceding formulas the

remaining magnitudes are computed.
in the following table:

-+ 15,88-10%-20,093-107° —173,3-107°,

. 1 2 3 4 5
c 1,08-10—6 7,85-10~° 12,05-10~% | —20,093.10%| —733.10-6
D 26,45-10~° 210,8-10~% | 14510-10% 19570-10~% 2035010~
N 0 0 1016.10~p | 2168-10~¢P | 3682.10~%P
B' — —_ - —_ —1,504.10~6
c —_ — — - —73,6-1076
N - — - — 37,7.107%.p

19

The results are glven
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Now M,, Q, are determined from the equations:
y.=73,3-10~°M,-— 20350-107°Q, - 3682.107¢ P,

o, = 1,504-107°M,+73,6-10~°Q, 4 37,7-107¢ P.

There 1s pbtained |3682 --20350

37,7 73,6 ;

My=——733 om0, = 292,
1,504 73,6
733 3682 »
1504 877 | o

Q=— 17733 o350 ' =00769P
1,504 73,6

Then the maximum deflection is found. The coordinate
of the ecenter of the beam is

xﬁ==215 cm

N AN A
Since Coy=3S,,—1C s —Cl |, =
915 . 175
—m—15,88-10 -1,98-10 6403107
—15,88-10%.7 85-10"“——1:22——- =37,7-10 ¢
’ ’ 6-40,3.107 ’ !
A A A
D, =1, —x«D|, —xDJI =
P P 'p ¥ ep -x,

3 3
215° _ _ 15,88.10°. 26,45.10-6__ L7

12

~ 6-40,3-10°7 §-40,3-10°
—15,88.10%.210,8-10~6. 135" __ 3600 10 s
’ ’ 6-40,3-10° ’
N, =0
p v
and therefore Y., =29,2-P-37,7-107* —0,0769- P-3682. 10" = 845.10 © P,
___1_ G k —_ 2 k
K 1is determined K= gz=-10 F§~11,83-10 aﬁn
Since five bulkheads are associated with the wetted
surface
=X _1183.10: kg |
10 cm

Determination of the funetion ulc).- To determine
the funetion ul{c), it is necessary first to write down an
analytical expression for the bottom profile. In this
case the bottom profile consists of a section of a straight
line and part of a circle, but 1t is more convenient to
express it by a curve of the form T = B § - B,_, D,

FPor n = 4, this curve very accurately represents the
profile. The coefficient B, and B are determined

by two polints of the profile.

3
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Denoting by E1 and §a, respectively, the coordinates
of the ernd of the straight line and the end of the curvi-
linear parts of the profile gives from the sketch

. t,=4lcm, 7,=144 cm,

t,=75cm, ,=20 cm.

e -

) -y o4 4. TB4__O0. 414
vhence g mEtnht | 44752041 o
XYY 41.75'— 75-41° ’ ‘
. Taby. — Ty __20'41“14:4'75_ .10~6 _1_
== TR T T T alyss.gn 027107 |~
and since © - ky==0,636, ky="1,500,
therefore -

P (c) ="kl — hyByc® = 0,636-0,37 —1,5.0,2375.107 6" =
. = 0,235 -—10,356 - 10~ 1,

Computation of 1, &1, w(e), V,.- To determine 1,
the wave 1is drawn to a certain scale in the form of a
trochoid of height of 1 meter and length 11 meters. To
the same scale the contour of the float 1s drawn and
superpoBed oh the wave with a trim angle equal to 10°

(fig. 10). Then by the same procedure as indicated
previously, there 1s obtained from the sketch

" 1=200 cm
Al=—l—=2—0—0=40 cm
i n 5
. ) 0001028
Agsime for p the value _p= g :;%,
=l 3,14.200 , 42
There 1s obtained }pr2mr -OﬁOHﬂS-Triﬁm—c-—1A740 -C
— o ~ m
- VO—V,msmlo =30,6- 017365_sec—53sec
, , o 2 2200
where - My =mag T am="g" kg

- OCollection of data required for the computation.-
b=75¢cm, Al=40 em_
__0,001028 kg
4 am®

1 =0,235=0,356. 1075 ¢, EJ=22,57-1010-K& ", )
cm® . -

p=1,47-10~4.ct, -

_ k -
k—1,183-10’a§, V,=5,3

sec

Determination of A(c) snd M(c).- By formnlas (9)
and (10) are computed the values of Mg(c) for a number

of values of ¢. A curve is then drawn from-which the
maximum value M,(c) 1s determined.
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For ¢ = % = 37.0 centimeters, there 1s obtained
B o= 1,47 x10 X 37.5% = 0.,2065
u = 0,235 — 0.356 x 107 ° x 37.5° = 0,2162

A(37,5) = —2.56
H, (37.5) = 8.2 X 10* kilogram-centimeter
By computing also Il (c) for the points ¢ = 20, 30,

50, 75 centimeters, a curve il = I, (c) 1s obtained (fig. 12).

From the figure it is seen that M, (c) reaches a maximum

approximately for ¢ = % and M _(c) £ 8.2 X 10* kilogram—

centinmeter.

Determination of the correction coefficient.—

e

1 5, 75
- _ 1-2x Y 2 o,7¢6
L 1 3( 2" 200/

2 x 2200 + 200
3.14 x 1.028 x 107° x 75° 5

Determination of the stresses . g.— Since ¢ X maximum

Ho(c) = 5.28 X 104 kilogram—centimeter and the resistance
moment of the floors W = 20,85 cuvic centimeters, there
is obtained
X m i o
c = ki ax Mo lc) = 30.1 EE
W mm®

It may be noted that the presentw—day factory compu—
tation (the so—called "static computation®) of the floor
as an element of the transverse system gives @ = 33
kilograms per square millimeter.

Translation by 5. Reiss,
National Advisory Committee
for Aerconautics.
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